بمب هیدروژنی یا «بمب گرماهستهای» نام رایج وسایل انفجاری است که در آنها از انرژی آزاد شده در فرآیند همجوشی هستهای برای تخریب استفاده میشود.
به دلیل نیاز به حرارت زیاد برای شروع همجوشی، از یک بمب شکافت هستهای به عنوان چاشنی بمب هیدروژنی استفاده میشود. از این بمب تا کنون به طور رسمی در جنگی استفاده نشده است اما قدرت تخریبی این بمب 200 برابر یک بمب اتمی است .
در این نوع بمب، با ایجاد یک انفجار اورانیومی یا پلوتونیومی، دمایی معادل چندین میلیون درجه سلیسیوس ایجاد میشود.ایزوتوپهای هیدروژنی که در بمب بکار رفتهاند، تحت این شرایط با یکدیگر جوش میخورند و به هلیم تبدیل میشوند و در این همجوشی، انرژی غیر قابل وصفی را آزاد میسازند.بنابراین در این نوع بمب، ترکیب شیطانی از شکاف هستهای و همجوشی هستهای بکار رفته است.بمب اتمی نسبتا کوچکی که شهر ژاپنی هیروشیما را نابود کرد، قدرت انفجاری معادل ۲۰۰۰۰ تن، ترینیتروتولوئن (تیانتی)، که یک ماده انفجاری عادی امروزی است، داشت.در مقابل، بزرگترین بمب هیدروژنیای که تاکنون برای آزمایش، منفجر شده، معادل 50 مگاتن تیانتی قدرت انفجاری داشته است.این قدرت انفجاری 2500 برابر قدرت انفجاری بمب هیروشیماست.
نحوه انفجار برای انجام عمل پیوند باید هسته دو اتم را به شدت به یکدیگر برخورد نموده، تا با هم پیوند خورده و در هم ذوب شوند. اما دافعه الکترواستاتیکی بین دوهسته، بعنوان مانع بزرگی در این راه محسوب می شودودر فواصل بینهایت نزدیک این دافعه فوق العاده زیاد است. البته راه حل سادهبه نظر میرسد، بدین معنی که بایستی به هستهها آنقدر سرعت دهیم که از این مانع عبور نمایند. میدانیم که سرعت ذرات در هر گازی بستگی به درجه حرارت آن گاز دارد. پس کافی است درجه حرارت را آنقدر بالا ببریم تا سرعت لازم برای عبور از این مانع بدست آید. درجه حرارت لازم برای این کار چندین میلیون درجه سانتیگراد است و چنین حرارتی در کره زمین وجود ندارد. اما اگر یک بمب اتمی در وسط تودهای از هستههای سبک منفجر شود، حرارت فوق العادهای که از انفجار بمب حاصل میشود، حرارت هستههای سبک را به قدری بالا میبرد که پیوند آنها را امکانپذیر سازد. این موضوع اساس ساختمان بمب حرارتی و هستهای (ترمونوکلئور) میباشد.
همانطوری که در کبریت عادی برای آتش گرفتن ابتدا فسفر موجود در آن بر اثر مالش محترق میشود و آنگاه گوگرد را روشن میسازد، در بمبهای (حرارتی و هستهای) نیز ابتدا یک بمب اتمی معمولی منفجر میشود و در نتیجه انفجار تودهای از اجسام سبک را به حرارت فوق العادهای میرساند، بطوری که هستههای آنها به هم میپیوندند و آنگاه انفجار مهیبتری انجام میگیرد.
بعد از انفجار یک بمب اتمی معمولی، عمل سرد شدن به سرعت انجام میگیرد. بنابراین، باید فعل و انفعالاتی را در نظر گرفت که در آنها عمل پیوند به سرعت انجام گیرد. اگر یک بمب اتمی را در مخلوطی از دوتریوم و تریتیوم محصور کرده و مجموعه را در یک محفظه با مقاومت مکانیکی زیاد قرار دهیم، پس ازانفجار بمب اتمی محیط مساعدی برای یک فعل و انفعال ترمونوکلئور (فعل و انفعال هستهای گرمازا) بوجود میآید و در اثر آن عمل پیوند هستهها انجام شده و هلیوم بوجود میآید.
تریتیوم + دوتریوم <----- هلیوم + نوترون
در نتیجه این فعل و انفعال، حدود هفده میلیون الکترون ولت، انرژی آزاد میشود. این میزان انرژِی نسبت به واحد وزن ماده قابل انفجار، در حدود چهار برابر انرژی است که از شکسته شدن اورانیوم حاصل میشود. به عبارت دیگر در موقع پیوند هستههای دوتریم و تریتیوم، انرژی بیشتر بر واحد جرم نسبت به شکافته شدن هستههای اورانیوم رها میشود.